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A Prediction of Bijvoet Intensity Differences in the Noncentrosymmetric Structures of 
Selenium and Tellurium 
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The presence of an antisymmetric component of the non-spherical atomic charge distribution results in a 
more general breakdown of Friedel's law in polyatomic noncentrosymmetric structures. That this is also true 
in the case of noncentrosymmetric structures of elements is demonstrated directly for the case of the trigonal 
structures of Se and Te. 

Introduction 

The extension of the substructure description (Iwasaki, 
1974) to include the antisymmetric atomic features 
incorporated within the generalized structure factor 
formalism (Dawson, 1967) leads to generalized ex- 
pressions for the Bijvoet ratio (Mclntyre & Barnea, 
1978). These expressions imply that, in general, 
Friedel's law (Friedel, 1913) breaks down for all non- 
centrosymmetric structures. In particular, it is predicted 
that because of the antisymmetric contribution of the 
non-spherical charge distribution due to bonding, non- 
centrosymmetric structures of elements do not obey 
Friedel's law, regardless of the exact details of the 
structure which determine the specific angular forms of 
the atomic scattering factors. Because of the important 
implications of this prediction, it is of considerable 
interest to demonstrate the breakdown of Friedel's law 
for a particular elemental structure. 

In this paper we discuss the structure of trigonal 
Se and Te, the simplest of the known noncentro- 
symmetric structures of elements. Following Dawson 
(1967), the atomic charge density is expanded in a 
series of symmetry-allowed functions. Inclusion of the 
deformation density in the expression for the Bijvoet 
intensity difference for this structure then demonstrates 
explicitly the breakdown of Friedel's law. 

The generalized intensity difference 

In the generalized structure factor formalism (Dawson, 
1967) the structure factor F(S) for a particular 
scattering vector S can be written in terms of the atomic 
scattering factors fp and the thermal-vibration factors 
Tp of the atoms at nuclear positions rp in the unit cell: 

F(S) = E fv(S) Tp(S)exp (2n/S.r) 
P 

* Present address: Institute of Chemistry, University of Uppsala, 
Uppsala, Sweden. 

where fp and Tp are the Fourier transforms of the 
atomic charge distribution pp and nuclear smearing 
amplitude tp respectively. 

In general, both pp and tp are noncentrosymmetric 
and hence fp and Tp are complex. For X-rays we also 
include the effects of anomalous dispersion: 

fp(S) = fc,p(S) + ifo,n(S) + fp' + i f; '  

To(S ) = Tc.v(S) + iTa,p(S), 

where f~ and .fp" are the real and imaginary dispersion 
corrections of atom p, and the subscripts c and a refer 
to the centrosymmetric and antisymmetric components 
respectively. 

The Bijvoet intensity difference between the Friedel 
pair of reflections defined by: 

AI(S) = IF(S)I 2 -  IF(--S)I 2 

is [suppressing (S)I: 

/ 1 1 = 4  ,_\" fa.p f / '  l ~ p + .  T~.p] 
P 

+ 4 E E {~.p fq"[(Tc.p Tc., 
P qCP 

+ Ta, p T~,o) cos 27rS.(rp- rq) 

+ (Tc, pTQ. q -- Ta. p To,q) sin 2nS.(rp-- rq)] 

+ JT',,, f~'I-(T~, , ,  T ~ , , -  To.~ T~.) cos 2nS. (r, - r,) 

+ (T~.pT~., + T , .pra .q)s in2nS. (rp-r¢) l  }. (1) 

In obtaining equation (1), all functions for the reflection 
at --S are evaluated in terms of the functions for the 
reflection at S by using the fact that in going from S to 
- S  all centrosymmetric functions are unchanged while 
all antisymmetric functions are changed in sign alone. 
It is emphasized that regardless of the presence of the 
antisymmetric atomic functions fa and To, a non-zero 
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f "  is still a necessary condition for Frieders law (AI  = 
0) to break down. 

If we assume a centrosymmetric charge distribution 
for each atom (i.e. fa.p = 0 for all p), and that all atoms 
have the same fc, f '  and f " ,  it is obvious from 
equation (1) that AI will vanish. Hence anharmonicity 
in the thermal vibration cannot itself lead to a break- 
down in Friedel's law for noncentrosymmetric struc- 
tures of elements. This results from the presence of a 
centrosymmetric, imaginary term (necessary to lead to 
a breakdown in Frieders law) in the expression for fp, 
but not for Tp. A more detailed discussion of the 
consequences of equation (1) is given elsewhere 
(Mclntyre & Barnea, 1978). 

The trigonal selenium structure 

The crystal structure of trigonal Se and Te consists of 
helical chains which spiral around axes parallel to the c 
axis and are arranged in a hexagonal array (Unger & 
Cherin, 1969). The space group is P3121 (D~) or P3221 
(D~) depending on the sense of rotation of the helical 
chains. In the following discussion we shall assume a 
left-handed spiral. The three atoms in the unit cell are 
situated at the special positions: P3~21: (u,0,0); 
(0,u,-~); ( -u , -u ,~) .  The site symmetry at these 
positions is 2. The structural parameter u has been 
determined by X-ray techniques to be 0.2254 (10) for 
Se (Cherin & Unger, 1967a) and 0-2633 (5) for Te 
(Cherin & Unger, 1967b). 

Since the atoms in the Se structure are identical in all 
respects, except in the orientation of their atomic 
environment, inclusion of anharmonicity in the thermal 
vibration will not lead to a breakdown in Friedel's law. 
We shall, therefore, for simplicity assume that the 
vibrations are harmonic and consider only the conse- 
quences of allowing the charge distribution to reflect the 
symmetry of the atomic site. Similarly, we shall also 
neglect the anisotropy in the harmonic vibrational 
motion observed in X-ray structure refinements of Se 
and Te (Cherin & Unger, 1967a,b). Inclusion of the 
anisotropy leads to no new conditions for the 
breakdown of Friedel's law and would needlessly 
complicate our expressions. Within our assumptions T c 
is the same for all three atoms, and for a structure of an 
element f '  ( f " )  is of course identical for all atoms. 

The scattering-factor model 

desired result may be readily demonstrated by ap- 
plication of the pseudo-atom model of Stewart (1976), 
whose notation we follow. 

In this model each atom is assumed to have an 
invariant core, and a deformable valence density that 
obeys the symmetry of the site. The valence charge 
density p ( r -  rp) of atom p at r is expressed as a finite 
multipole expansion about the atomic site rp: 

where C~t,, , and C~,t,,, are electron-population 
coefficients and r~, = r -  rp. The basis functions B~t,n 
and B~t,n are 

Z~,,,,(r~) = (4n)- '  np , (6  ) P~n(cos Op) cos (m~pp) 

B~t,, , (r~) = (4n)- '  Rp,(r~) PT'(cos Op) sin (m~0p), 

where Rpt(~ ) is a radial function for the lth order 
multipole of pseudo atom p, P~'(cos 0p) is an associated 
Legendre function, and Op and ~Op are the angular 
components of the vector r~,. The superscripts e and o 
denote the even and odd functions respectively. 

The representation for the scattering factor fp(S), 
omitting the anomalous-scattering contributions, is 
obtained from the Fourier transform of equation (2): 

fp(S) = C~t,, , f;,,,(S) + ~. C~,,,, f~,,,(S , 
/ = 0  0 m = l  

where 

and 

f~,,,(S) = i t fp t (S)  P~'(cos O~) cos (m~os) 

f~,,,(S) = i t fp t (S)  P~(cos 0s) sin (mq~s) 

are the generalized X-ray scattering factors and 0 s and 
% are the angular components of the Bragg vector. The 
radial function is 

oo 

fpt(S) = f R pt(r~) Jr(St'o)' r~'2 dry; 
0 

where jr(x) is an lth-order spherical Bessel function. 
The form of the radial distribution function does not 
concern us here since it is the angular components of 
the generalized X-ray scattering factors [the tesseral 
harmonics, 

PT't (cos 0~) [.sin (mq~s) JJ 

The electron density distribution may be represented by 
a variety of models differing predominantly in the 
functions used to express the radial dependence of the 
distribution about each atomic site; the angular 
dependences of the various models must be identical if 
they are to fully reflect the site symmetry. Here the 

that reflect the symmetry of the site. 
Stewart (1973, 1976) has presented the symmetry 

constraints for the multipole basis functions up to 
fourth order in I for all point groups. The several multi- 
poles up to fourth order that obey the symmetry of 
point group 2 in reciprocal space are listed in Table 1. 
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In Table 1 the z axis is along the direction of maximum 
symmetry and the (qx,qy,q~) are direction cosines of the 
Bragg vector in an arbitrary orthogonal coordinate 
system. 

For atom 1 at (u,0,O) the maximum symmetry 
direction is along the a axis of the unit cell. The 
required transforms relating (qx,qy,q~) to the conven- 
tional hexagonal Miller-Bravais indices hkjl of the 
reflection S are 

k - j  
q x - -  31/2aS 

l 

q~' = c-S 

The scattering factors for the other two atoms in the 
unit cell are obtained simply by cyclic interchange of 
the indices hkj. Since all atoms are identical apart from 
the orientation of the atomic environment, C~o = C20 = 
C30, CI~ 3 = C213 = C313 etc. Similarly, the corre- 
sponding radial functions are identical: f~o = f20 = f30; 
f l l  = f21 = f31 etc. 

The harmonic intensity difference for selenium 

To demonstrate that AI(T,  = 0) is in general non-zero 
for this structure, it is sufficient to consider only the 
first-order effect of the valence electron density of fp 
with: 

h 
qz ~ - -  

a S  ' 

where a and c are the lattice parameters and 

[ ( h ) 2  ..[_ Ik _j 12 (!)211/2 
s :  Isl : ; 17 ]+ 

The scattering factor for atom 1 is, to third order, 
h 

f l ( S )  = fc°re + f l ° ( S ) C l °  + / f l l ( S )  C113 a-S 

_f l2 (S  ) {3C,2, [[(k-3--~-J)2 c 212 g2]l 

+ 6C122 3~/2acS2 + - C~25 2 2S2 

{ -- lf l3(S) 15C'33 ]_ 3-~ ~ aS 3 

+ 2C~37 3 + 30C m 31/2a2 cS 3 \a 2 S 2 - ~  • 

Table 1. Non-vanishing 
point group 2 

multipole basis functions for 
in reciprocal space 

Tesseral harmonic Cartesian representation 

~(cos 0) q, 
P~(cos O) cos (2~0.) 3(q~ z - q~) 
P~(cos 8 )  sin (2¢&) 6q.~qy 
p~2(co s Os ) j (q2 ._ j)  
P~(cos Os) cos (2~o) 15(q~ - qy2)q~ 
P](cos 0s) sin (2¢P5) 30qx qy qz 
~(cos 0) ' ' : ( 1 5 q . -  3)q.  
P~4(cos 0.,) cos (4~0s) 105(qx 4 2 2 - 6qx qy + q~) 
P~.(cos 05) sin (4(o5) 420(q~ z - -  q~) qxq~, 
P](cos 0)  cos (2(o5) 15 2 2 ! -r(Vq. - l)(qx - q,,) 
P](cos 05) sin (2(os) 15(7q~ - l)q~q v 
~(cos 0) ' ' ~) ~(7q. - 6q2~ + 

f~.o = fc + rio(S) C,o (p = 1, 2, 3) 

h 
L . ,  = L , ( S ) C  113 aS 

and 

k 
f a ' 2 = f l l ( S ) C l l 3  a S  

J L.3=fl,(S)C,.aS. 

where fc is the conventional spherically symmetric 
atomic scattering factor. 

The harmonic intensity difference [using equation 
(1)1 is then: 

A I ( T a = O ) = 4 T ~ f " f , , ( S ) C , , 3 ( ~ - ~ )  

, u  

+ ( k + h ) c o s [ 2 n ( k - h ) u - 2 z c ~ ]  

-- o 
3 

(3) 

AI(T a = O) does not vanish identically, as may be seen 
by substitution of specific values of the indices hkfl. 

Discussion 

By expanding the atomic charge density as a series of 
symmetry-allowed functions we have demonstrated 
that non-zero Bijvoet intensity differences are allowed 
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in the noncentrosymmetric trigonal Se and Te struc- 
tures. We have not attempted to predict the magnitude 
of the intensity differences. To determine whether these 
differences are measurable would require a knowledge 
of the form of the radial functions Rpt and an estimate 
of the electron-population coefficients for these 
structures. 

Chandrasekaran (1968) has also suggested that 
Bijvoet intensity differences may be observed in the 
noncentrosymmetric elements. However, our argu- 
ments for their appearance are independent of Chan- 
drasekaran's  postulates. 

The existence of the chain structure in trigonal Se 
and Te is manifested by the anisotropy ratio of 
intrachain to interchain bonding strength as reflected in 
lattice dynamic and electronic structure studies of these 
structures (Joannopoulos, Schliiter & Cohen, 1975; 
Martin, Lucovsky & Helliwell, 1976; and references 
therein). The atoms within each chain are tightly and 
covalently bonded to two neighbours; the interchain 
bonding is partly van der Waals in character with an 
admixture of some covalent bonding. This anisotropy 
in the bonding renders particularly desirable a more 
complete representation of the atomic charge density 
than the usual spherically symmetric representation, 
and gives credibility to our discussion. 

As well as providing information of considerable 
value about bonding features, observation of Bijvoet 
intensity differences in noncentrosymmetric elemental 
structures may also aid the resolution of ambiguities in 
their symmetry.  A possible example of such an 
ambiguity is the question as to whether the fl-uranium 

structure possesses a centre of symmetry (Tucker, 
Senio, Thewlis & Steeple, 1956). 
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The Crystal Structure of 4Nb2Os.9WO 3 Studied by 1 MV High-Resolution Electron 
Microscopy 
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(Received 3 March 1978; accepted 26 April 1978) 

Images of pale yellow crystals of 4Nb205. 9WO 3, obtained with a 1 MV high-resolution electron microscope 
revealed twinned domains of a tetragonal tungsten bronze structure with a superlattice of 3 x 1 subcells. 
Comparison with computer calculations suggests that the cations filling the pentagonal tunnels include both 
Nb and W. Crystals darkened due to reduction on longer heating included no domains and were sensitive to 
electron irradiation; cations were knocked on from the filled to the vacant pentagonal tunnels. This suggests 
that some oxygens are released from the - M - O - M - O - M -  strings in the tunnels on reduction to weaken 
the chemical bonding. The number of deficient oxygens is known from the weight gain on oxidizing the 
crystal. Some additional experiments reveal that there is no '6Nb205. 1 IWO 3' phase. The resolving power of 
the present microscope is discussed on the basis of the analysis of the chromatic aberration. 


